BEFORE AFTER

FILE_A.js FILE_B.css HODULE_D1

T =T

MODULE_D2 CORE_SERVICES

ti: From ‘Vibe Codlng
to Rellable Shlpplng

“"l-._‘i'

e 0’.%;'

|f?—1 "‘!Eghl ,"].ii:] e DMM;ﬂs =
@8\ —

Context-Engineering & Spec-Driven Development Workflow.

FILE_A.]}s FILE B.c

TTTTT

@KRUNKOSAURUS

The Problem: Context Rot & Hallucination

Why the "chat until it's done" approach breaks down at scale.

Context Window Overflow

N

Recent Memory -

Active Context —

]

Fading Context -

Forgotten Instructions

> User: Implement user authentication.
> AL: Sure, here 1s the authentication
module. ..
nane:convesstor(),

> User: Implement user authentication.

> AI: Sure, here 1s the authentication
nodule. ..

»Al+Ensvertietion. ..

> User: huthentication...

>-Al: Sure-here is the eocoter none.

> User: Add social login...

> U=-e: Add social login...

> U-e: A.d s-¢ia_ og...

» Use: Aadone login to get reasonael. ..

> U-e: A_d s-cia_ login...
-g: A_d s-cia_ o0g...
-g: A d s-cia_
-&: A_d s-cla_ og...

0

¥ v Vv
| = = it
o I

[l

Context Window Overflow

The Al forgets early instructions as
the conversation lengthens, leading
to degraded quality.

Ambiguity
Without explicit specs, the Al
chooses “reasonable defaults” you

didn’'t actually want.

Lack of Roadmap

Generating code without acceptance
criteria leads to endless loops, not
finished products.

Insight: "Reliably building" 1s fundamentally different from "merely generating".

The Solution: GSD Defined

GSD i1s a context-engineering and spec-driven development workflow
implemented as a Claude Code plugin.

e o i P

Old Way New Way (GSD)

Ephemeral Chat Memory.

Fragile, temporary state
that vanishes when the

window closes.

Persistent File Memory.

Concrete, permanent state
stored in .md files.

The Engine: 4 Pillars of Stability

1. File-Based Memory 2. Atomic XML Plans

PROJECT.md and STATE.md Plans include name, files,

persist the vision, beating action, and verification

chat history limitations. steps. Reduces ambiguity
to zero.

3. Sub-Agents &
Parallelism

A thin coordinator spawns
specialized agents (research,
planning, execution) to keep
the main context clean.

4. Atomic Commits

Each plan is its own
auditable unit, making git
bisect trivial and changes
easily revertible.

The Brain: Artifacts You Must Love

r \
B —I— The Vision: Goals & Constraints.
i 3
\ The Scope: Bucketed into v1,
PROJECT.md | | v2, and Out-of-Scope.)
REQUIREMENTS.md —— "The Plan: Phased execution |
_mapped back to requirements.

ROADMAP.md r ,
The Status: Current decisions,
STATE.md —l_hblockers, and position.

| . h rFThe Context: Domain and stackﬁ
D -P anmnglresearc l research findings.

v

J

[Key Insight: Each task runs with only the context it needs from these files.]

The Core Workflow Loop

Initialize
(/gsd:new-project)

Discuss Plan
(/gsd:discuss-phase) (/gsd:plan-phase)

Repeatable
@ Execute
(/gsd:execute-phase)

Phase Cycle
Complete
(Milestone)

A repeatable machine that turns ideas into shipped code.

Verify
(/gsd:verify-work)

Step 1: Initialize

/gsd:new-project Output

Interview Parallel S
k.
ROADMAP.md
Requirements Artifact B ARTIFACTS/
Bucketing Creation

Pro-Tip:

Be ruthless about scope and constraints. The better your “v1 vs. v2” boundary, the
more the system shines.

Step 2: Discuss Phase

/gsd:discuss-phase [N]

Clarification

The Goal: Convert
one-sentence ideas

into real
Implementation e
preferences. w
Idea Context

Pro-Tip: How to Rock It: Explicitly answer the gray areas.
UX behavior (empty states, errors)

API contracts (response shape, pagination)

Output: The
{phase}-
CONTEXT.md
file—the “don't
guess” anchor.

“What matters most” vs. “Nice-to-have”

Step 3: Plan Phase

/gsd:plan-phase [N]

The Action: Produces
2-3 atomic plans (small
enough to execute in
clean contexts).

Coordinator

PLAN.md
(Atomic XML)

This is writing the SPEC,
not the CODE.

workflow.research workflow.plan_check workflow.verifier
A
L

How to Rock It

Treat plans like mini Pull Request descriptions. If something is underspecified, fix it here, not during execution.

Step 4: Execute Phase

/gsd:execute-phase [N]

Plan A Execution

Plan B Execution

A
_E| SUMMARY .md Code Changes

How to Rock It: Keep the repo ready to change.
Tests must be runnable

Plan C Execution

Linting wired up
Dev server starts
Insight: GSD can only verify what your project can actually run.

Step 5: Verify & Audit

/gsd:verify-work [N]

Manual UAT
Walkthrough

Capture
Results

g
Fix Plan

The Action: You prove the phase met the promise.

Pro-Tip: How to Rock It

Test like a Product Manager. Check the 'happy path' AND the 'sharp
edges' (errors, boundaries, weird inputs).

Working with Brownfield Projects

/gsd:map-codebase

Mechanism:

Spawns

parallel agents

to learn stack
conventions and
constraints BEFORE
tryling to write
new code.

Benefit:

Ensures the
workflow adapts to
the existing repo
rather than
ignoring it.

Milestone Management

/gsd:audit-milestone /gsd:plan-milestone-gaps /gsd:complete-milestone /gsd:new-milestone

Verify Definition Fix Audit Archive & Tag Start New
of Done Issues Release Cycle

Iterative shipping with a clean history.

Command Reference

Core Workflow
/gsd:new-project
/gsd:discuss-phase
/9sd:plan-phase
/gsd:execute-phase

/agsd:verify-work

Utilities & Navigation

/gsd:progress (Status check)
/gsd:debug (Structured debugging)
/gsd:add-todo / :check-todos
/gsd:settings (Configure agents)
/gsd:quick (Ad-hoc tasks)

